This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Two new 1D cadmium(II) azido complexes: catina-Poly[di- $\mu_{1,1}$-azido(2,2'bipyridyl)cadmium(II)] and a new polymorph of catina-Poly[di- $\mu_{1,1}$-azido (2-acetylpyridine)cadmium(II)]

M. A. M. Abu-Youssef ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, 21321 Alexandria, Egypt

To cite this Article Abu-Youssef, M. A. M.(2005) 'Two new 1D cadmium(II) azido complexes: catina-Poly $\left[\right.$ di- $\mu_{1,1}$-azido(2,2'bipyridyl)cadmium(II)] and a new polymorph of catina-Poly[di- $\mu_{1,1}$-azido (2-acetylpyridine)cadmium(II)]', Journal of Coordination Chemistry, 58: 15, 1377-1386
To link to this Article: DOI: 10.1080/00958970500241498
URL: http://dx.doi.org/10.1080/00958970500241498

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Two new 1D cadmium(II) azido complexes: catina-Poly[di- $\mu_{1,1}$-azido(2,2'-bipyridyl)cadmium(II)] and a new polymorph of catina-Poly[di- $\mu_{1,1}$-azido (2-acetylpyridine)cadmium(II)]

M. A. M. ABU-YOUSSEF*
Department of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia, 21321 Alexandria, Egypt

(Received in final form 27 April 2005)

Abstract

Two new cadmium(II) azido complexes, $\left[\mathrm{Cd}\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{N}_{3}\right)_{2}\right]_{\mathrm{n}}$ (1) and $\left[\mathrm{Cd}(2-\mathrm{acpy})\left(\mathrm{N}_{3}\right)_{2}\right]_{\mathrm{n}}$ (2) ($2,2^{\prime}$-bipy $=2,2^{\prime}$-bipyridyl and 2 -acpy $=2$-acetylpyridine), have been synthesized and structurally characterized by single-crystal X-ray diffraction methods. The coordination environment of the central cadmium atom is distorted octahedral $\left(\mathrm{MN}_{6}\right)$ in $\mathbf{1}$ and $\left(\mathrm{MN}_{5} \mathrm{O}\right)$ in 2, with onedimensional chains formed through $\mathrm{Cd}_{2} \mathrm{~N}_{2}$ units and alternatively chelating $\mathrm{N}, \mathrm{N}^{\prime}$-bipyridyl or N,O-2-acetylpyridine groups. The central Cd(II) ion is coordinated to two nitrogen atoms of a chelating bipyridyl group or one nitrogen atom and one acetyl oxygen of 2-acetylpyridine and four nitrogen atoms of four different end-on bridging ($\mu_{1,1}-\mathrm{N}_{3}$) groups. Chains in the c direction in $\mathbf{1}$ are stabilized in b direction by $\pi-\pi$ interactions involving the aromatic rings of bipyridyl ligands. IR and NMR spectra of the two complexes are reported.

Keywords: Cadmium(II); 2,2'-Bipyridyl; 2-Acetylpyridine; Azido complexes; IR and NMR spectra; X-ray structure

1. Introduction

The pursuit of high dimensional polymeric crystalline assemblies extending across a wide variety of organic/inorganic hybrid compounds has been motivated by interest in creating structures with new topologies, cavities and channels of potential use in adsorption, ion exchange, non-linear optical and magnetic materials [1, 2]. Polynuclear d^{10} metal complexes are attractive due to the fact that they exhibit intriguing structures and photoluminescent properties [3]. Investigations in this field have resulted in many kinds of materials with interesting structures using neutral organic ligands such as pyrazine, 4,4'- and 2,2'-bipyridine, 2, 2^{\prime}-bipyridylamine and other bidentate ligands [4-6].

[^0]The versatile azide ligand can link metal ions in $\mu_{1,1^{-}}$(end-on, EO), $\mu_{1,3^{-}}$(end-to-end, EE), $\mu_{1,1,3^{-}}, \mu_{1,1,1^{-}}$or other modes, yielding various polynuclear, one-, two-, or threedimensional species with specific topologies. Although several systems and topologies have been reported with this trend for $\mathrm{Mn}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ polymers are few in number [7-9]. It is noted that the explosive nature of metal azido complexes is dependent on the mode of bonding of bridged azides. Metal azido complexes have recently attracted a lot of interest as building blocks for construction of molecularbased materials $\left(\mathrm{M}(\mathrm{II})=\mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}\right)[10,11]$.

We recently reported a number of Zn^{2+} and Cd^{2+} azido and thiocyanato coordination polymers with some pyridine derivatives showing different bridging modes and topologies [12-15]. We now extend this work to include the reaction of Cd^{2+} ions with $2,2^{\prime}$-bipyridyl in the presence of azide ions. We have also modified the reaction between cadmium(II) ions, 2-acetylpyridine (2-acpy) and azide ions to produce a complex with a $1: 1 \mathrm{Cd}\left(\mathrm{N}_{3}\right)_{2}: 2$-acpy ratio. Here we report the synthesis and structural characterization of these two complexes.

2. Experimental

2.1. Materials and instrumentation

$\mathrm{C}, \mathrm{H}, \mathrm{N}$ analyses were carried out using a Perkin-Elmer instrument and Cd^{2+} was determined using a Perkin-Elmer Analyst 300 AAS atomic absorption spectrometer. Infrared spectra were recorded on a Bruker IFS-125 FTIR spectrophotometer (KBr pellets). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{-d_{6}}$) spectra were recorded on a Jeol JNM-ECA 500 MHz spectrometer. The ligands 2,2'-bipyridyl and 2-acetylpyridine purchased from Aldrich and other chemicals were of analytical grade quality and used as received.

2.2. Synthesis

Caution: metal azide complexes are potentially explosive. Only a small amount of material should be prepared and should be handled with caution.
2.2.1. $\left[\mathbf{C d}\left(\mathbf{2}, \mathbf{2}^{\prime}-\right.\right.$ bipy $)\left(\mathbf{N}_{3}\right)_{2} \mathbf{l}_{\boldsymbol{n}}$ (1). To an aqueous solution $\left(20 \mathrm{~cm}^{3}\right)$ of $3 \mathrm{CdSO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ $(0.77 \mathrm{~g}, 1.0 \mathrm{mmol})$ a solution of $2,2^{\prime}$-bipyridyl $(0.46 \mathrm{~g}, 3 \mathrm{mmol})$ in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was added, followed by dropwise addition of an aqueous solution of $\mathrm{NaN}_{3}(0.65 \mathrm{~g}$, 10 mmol), with continuous stirring. The turbid mixture was heated to boiling, filtered, boiled again, the final clear mixture allowed to cool gradually to room temperature and then placed in a refrigerator for several days. Colourless plates suitable for X-ray measurements were collected and dried in air (yield $\sim 65 \%$). Anal. Calcd (\%): C, 34.06; H, 2.29; N, 31.78; Cd, 31.88. Found: C, 33.96; H, 2.21; N, 31.90; Cd, 31.69. IR (cm^{-1}) (vs=very strong; $\mathrm{s}=$ strong; $\mathrm{ms}=$ medium strong; $\mathrm{w}=$ weak; $\mathrm{br}=$ broad): 2056 vs, 2035 vs ($\mathrm{v}_{\mathrm{as}}-\mathrm{N}_{3}$), $1588 \mathrm{vs}, 1560 \mathrm{~ms}, 1485 \mathrm{~ms}, 1471 \mathrm{~ms}, 1437 \mathrm{vs}$, $1334 \mathrm{~s}, 1314 \mathrm{~ms}, 1284 \mathrm{~s}\left(\mathrm{v}_{\mathrm{s}}-\mathrm{N}_{3}\right), 1174 \mathrm{~s}, 1161 \mathrm{~s}, 1043 \mathrm{~s}, 1014 \mathrm{~s}, 765 \mathrm{vs}, 735 \mathrm{~ms}$, $648 \mathrm{~ms}, 593 \mathrm{~ms}, 406 \mathrm{~ms}$ (bipy vibrations), $365 \mathrm{~ms}, 341 \mathrm{~ms}, 316 \mathrm{~ms}, 293 \mathrm{wm}, 270 \mathrm{~ms}$.
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{DMSO}_{-}\right)$: $\delta 8.69$ (d, 2H), 8.53 (d, 2H), $8.15 \quad(\mathrm{t}, 2 \mathrm{H}), 7.69 \quad(\mathrm{t}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta 150.29,149.62,140.41,126.45,122.71$.
2.2.2. $\left[\mathbf{C d}(\mathbf{2}-\operatorname{acpy})\left(\mathbf{N}_{3}\right)_{2} l_{n}\right.$ (2). The complex was prepared by combining $15 \mathrm{~cm}^{3}$ of an aqueous solution of $\mathrm{NaN}_{3}(0.98 \mathrm{~g}, 15 \mathrm{mmol})$ with an aqueous solution of $3 \mathrm{CdSO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}(0.76 \mathrm{~g}, 1.0 \mathrm{mmol})$ and 2-acetylpyridine $(0.48 \mathrm{~g}, 4 \mathrm{mmol})$ in $15 \mathrm{~cm}^{3}$ of ethanol. The solution was heated for several minutes then allowed to stand at room temperature for several days; colourless crystals suitable for X-ray diffraction were collected and dried in air (yield $\sim 65 \%$). Anal. Calcd (\%): C, 26.44; H, 2.22; N, 30.87; Cd, 35.35. Found: C, 26.40; H, 2.18; N, 31.05; Cd, 35.40. IR (cm^{-1}) 2100, 2050, 2035 vs ($v_{\mathrm{as}}-\mathrm{N}_{3}$), 1670 vs ($v_{\mathrm{as}}-\mathrm{C}=\mathrm{O}$), $1590 \mathrm{~s}, 1569 \mathrm{~ms}, 1438 \mathrm{~ms}, 1418 \mathrm{~ms}, 1360 \mathrm{~s}$, $1337 \mathrm{~s}, 1318 \mathrm{~s}, 1287 \mathrm{~s}\left(v_{\mathrm{s}}-\mathrm{N}_{3}\right), 1247 \mathrm{~ms}, 1223 \mathrm{~ms}, 1164 \mathrm{~ms}, 1119 \mathrm{~ms}, 783 \mathrm{~s}, 653 \mathrm{wm}$, $639 \mathrm{~ms}, 613 \mathrm{~ms}, 594 \mathrm{~ms}, 407 \mathrm{w}$ (pyridine vibrations), $318 \mathrm{wm}, 294 \mathrm{wm}, 271 \mathrm{~m}$ (M-L vibrations). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 2.58(\mathrm{~s}, 3 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 8.19(\mathrm{~m}, 1 \mathrm{H}), 8.21$ $(\mathrm{d}, 1 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H})$.

2.3. X-ray crystallography

All diffraction data were collected using a Siemens SMART CCD diffractometer with Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$, graphite monochromator). Crystals were cooled to $173(2) \mathrm{K}$. Full spheres of reciprocal space were scanned by 0.3° steps in ω with a crystal-to-detector distance of 3.97 cm . Preliminary orientation matrices were obtained from the first frames using SMART [16]. The collected frames were integrated using preliminary orientation matrices, which were updated every 100 frames. Final cell parameters were obtained by refinement of the positions of reflections with $I>10 \sigma(I)$ after integration of all the frames using SAINT [16]. Data were empirically corrected for absorption and other effects using the SADABS [17] program. The structures were solved by direct methods and refined by full-matrix least-squares on all F^{2} data using SHELXTL [18]. Non-H atoms were refined anisotropically, while hydrogen atoms were refined isotropically with the use of geometrical restrains. Crystallographic and refinement data are summarized in table 1 . Selected bond distance and bond angles for complexes $\mathbf{1}$ and $\mathbf{2}$ are given in tables 2 and 3, respectively. Molecular graphics (figures 1-5) were prepared using Diamond [19]. Supplementary data are available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK on request, quoting the deposition numbers CCDC 268933 and CCDC 258681 for $\mathbf{1}$ and 2, respectively.

3. Results and discussion

Two new azide compounds $\left[\mathrm{Cd}\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$ (1) and $\left[\mathrm{Cd}(2-\mathrm{acpy})\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$ (2) ($2,2^{\prime}$-bipy $=2,2^{\prime}$-bipyridyl and 2 -acpy $=2$-acetylpyridine) have been synthesized and isolated. Complexes are photoluminescent and light sensitive, and are 1D coordination polymers. Previously we reported a polymorph of $\mathbf{2}$ with the same stoichiometry but with a different structural motif (2D) [13a]. The present dimorph of $\left[\mathrm{Cd}(2-\mathrm{acpy})\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$ was synthesized by a different route. Complexes $\mathbf{1}$ and $\mathbf{2}$ are insoluble in both non-polar (benzene, $\left.\mathrm{CCl}_{4}\right)$ and polar solvents $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{EtOH}\right.$, CHCl_{3}, acetone), indicating their polymeric natures. Both complexes are slightly soluble in DMSO.

Table 1. Crystallographic data and structure refinement for compounds $\mathbf{1}$ and $\mathbf{2}$.

	1	2
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{CdN}_{8}$	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{CdN}_{7} \mathrm{O}$
Formula weight	352.64	317.60
Crystal system	Monoclinic	Triclinic
Space group	C2/c	$P \overline{1}$
Unit cell dimensions		
	$a=20.2435(3){ }_{\text {® }} \AA$	$a=6.7816(1) \AA$
	$b=9.4740(2) \AA$	$b=8.4324(1){ }_{\text {A }}$ 。
	$c=6.7045(2) \AA$	$c=10.7426(1) \mathrm{A}$
	$\beta=107.330(1)^{\circ}$	$\alpha=70.921(1)^{\circ}$
		$\beta=72.026(1)^{\circ}$
		$\gamma=67.145(1)^{\circ}{ }^{3}$
Volume	1227.46(5) \AA^{3}	$523.227(11) \AA^{3}$
Z	4	2
Density (calculated)	$1.908 \mathrm{Mg} \mathrm{m}^{-3}$	$2.016 \mathrm{Mg} \mathrm{m}^{-3}$
Absorption coefficient	$1.778 \mathrm{~mm}^{-1}$	$2.077 \mathrm{~mm}^{-1}$
$F(000)$	688	308
Crystal size	$0.08 \times 0.06 \times 0.04 \mathrm{~mm}^{3}$	$0.36 \times 0.32 \times 0.26 \mathrm{~mm}^{3}$
Theta range for data collection	2.11 to 32.59°	2.70 to 32.93°
Index ranges	$\begin{aligned} -30 & \leq h \leq 30, \\ -13 & \leq k \leq 14, \\ -9 & \leq l \leq 8 \end{aligned}$	$\begin{aligned} -10 & \leq h \leq 10, \\ -12 & \leq k \leq 12, \\ -16 & \leq l \leq 15 \end{aligned}$
Reflections collected	9171	9212
Independent reflections	$2141[R(\mathrm{int})=0.0603]$	$3630[R(\mathrm{int})=0.0217]$
Max. and min. transmission	0.932 and 0.871	0.614 and 0.522
Refinement method	Full-matrix least-squares $\text { on } F^{2}$	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2141/0/91	3630/0/153
Goodness-of-fit on F^{2}	1.014	1.038
Final R indices [$I>2 \sigma(I)$]	$R 1=0.0416, w R 2=0.0899$	$R 1=0.0211, w R 2=0.0554$
R indices (all data)	$R 1=0.0569, w R 2=0.0973$	$R 1=0.0219, w R 2=0.0560$
Largest diff. peak and hole	1.793 and $-1.388 \mathrm{e}^{\text {A }}{ }^{-3}$	2.001 and $-0.745 \mathrm{e}^{\text {A }}{ }^{-3}$

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.

$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})$	2.312(3)	$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {ii }}$	2.422(3)
$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}$	2.312 (3)	$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iii }}$	2.422(3)
$\mathrm{Cd}(1)-\mathrm{N}(1)$.	2.364 (3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$1.208(4)$
$\mathrm{Cd}(1)-\mathrm{N}(1)^{\mathrm{i}}$	$2.364(3)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})$	$1.159(5)$
$\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})$	107.38(17)	$\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iiii }}$	74.36(11)
$\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1)^{\mathrm{i}}$	95.15(10)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iii }}$	95.32(10)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1)^{\mathrm{i}}$	151.83(11)	$\mathrm{N}(1){ }^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iii }}$	107.14(11)
$\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1)$	151.83(11)	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iii }}$	87.15(9)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1)$	95.15(10)	$\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {iii }}$	162.82(15)
$\mathrm{N}(1)^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1)$	69.83(13)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)$	121.2(2)
$\mathrm{N}(1 \mathrm{~A})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	95.32(10)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)^{\text {ii }}$	132.8(2)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {ii }}$	74.36(11)	$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)^{\text {ii }}$	105.65(11)
$\mathrm{N}(1){ }^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	87.15(9)	$\mathrm{N}(3 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	179.2(3)
$\underline{\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {ii }}}$	107.14(11)		

[^1]Table 3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 2.

$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})$	$2.2473(16)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$1.202(2)$
$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})$	$2.2958(15)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)^{\mathrm{ii}}$	$2.4280(16)$
$\mathrm{Cd}(1)-\mathrm{N}(1)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})$	$1.146(3)$	
$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}$	$2.3194(15)$	$\mathrm{N}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	$1.209(2)$
$\mathrm{Cd}(1)-\mathrm{O}(9)$	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)^{\mathrm{i}}$	$2.3823(15)$	
$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	$2.3823(15)$	$\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	$1.149(3)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})$	$2.3993(14)$	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	$82.69(5)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1)$		$\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	$170.70(5)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)-\mathrm{N}(1)$	$100.22(6)$	$\mathrm{O}(9)-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	$87.11(5)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}$	$156.27(6)$		
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}$	$97.19(6)$	$107.33(6)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)^{\mathrm{ii}}$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}$	$80.34(6)$	$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)^{\mathrm{ii}}$	$118.52(13)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{O}(9)$	$91.35(5)$	$\mathrm{N}(3 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$103.20(6)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)-\mathrm{O}(9)$	$97.22(6)$	$\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)$	$177.5(2)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(9)$	$159.43(5)$	$\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)^{\mathrm{i}}$	$118.56(13)$
$\mathrm{N}(1 \mathrm{~B})^{\mathrm{i}}-\mathrm{Cd}(1)-\mathrm{O}(9)$	$69.67(5)$	$\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)^{\mathrm{i}}$	$114.68(12)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\mathrm{ii}}$	$84.12(5)$	$\mathrm{N}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	$99.66(6)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cd}(1)-\mathrm{N}(1 \mathrm{~A})^{\text {ii }}$	$76.80(6)$		$178.5(2)$

Symmetry transformations used to generate equivalent atoms are (i): $-x,-y+2,-z+1$; (ii): $-x+1,-y+2,-z+1$.

Figure 1. Numbering scheme for $\left[\operatorname{Cd}\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$, 1, with atomic displacement ellipsoids drawn at the 50% probability level. For symmetry codes see table 2 .

Figure 2. The 1D chain formed in the $\left[\mathrm{Cd}\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$ complex.

3.1. Structures

3.1.1. $\left[\mathbf{C d}\left(\mathbf{2}, \mathbf{2}^{\prime}-\operatorname{bipy}\right)\left(\mathbf{N}_{3}\right)_{2}\right]_{n}$ (1). The structure of $\mathbf{1}$ is illustrated in figure 1. It consists of 1 D , neutral zigzag chains along the c axis (figure 2) containing $\mathrm{Cd}_{2} \mathrm{~N}_{2}$ units. Cd atoms are octahedrally coordinated by four $\mathrm{EO}(\mu-1,1)$ azide ions and one bidentate $2,2^{\prime}$-bipy group. The octahedral geometry around $\mathrm{Cd}(\mathrm{II})$ is highly distorted, with an

Figure 3. Projection of $\mathbf{1}$ structure along the c axis. The chains are stabilized in the b direction by $\pi-\pi$ interactions.

Figure 4. Numbering scheme for $\left[\operatorname{Cd}(2-a c p y)\left(\mathrm{N}_{3}\right)_{2}\right\}_{n}$, 2, with atomic displacement ellipsoids drawn at the 50% probability level. For symmetry codes see table 3 .

Figure 5. A 1D chain of $\left[\operatorname{Cd}(2 \text {-acpy })\left(\mathrm{N}_{3}\right)_{2}\right\}_{n}, \mathbf{2}$, propagating in the a direction.
acute bipyridyl bite ($\left.\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N} 1,69.8(1)^{\circ}\right)$ and a transoid N 1 (bipy) $-\mathrm{Cd}-\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$ (azido) angle of $151.8(1)^{\circ}$. Octahedra share two edges with two adjacent EO azido mediated Cd octahedra. The coordinated nitrogens of the EO bridging azide groups have $\mathrm{Cd}-\mathrm{N}$ distances of $2.312(3)$ to $2.422(3) \AA$, while the two $\mathrm{Cd}-\mathrm{N}$ (bipy) bonds are identical (2.364(3) \AA). Cd-N (EO-azide) bond lengths are in the same range as in similar Cd complexes with different hetero-nitrogen donors [20, 21]. Azide groups are asymmetric with $\mathrm{N}-\mathrm{N}$ bond distances of 1.208 and $1.159 \AA$, respectively. The structure is unique in that it contains four EO azido bridges and is unlike that of
$\left[\mathrm{Zn} \text { (bipy) }\left(\mathrm{N}_{3}\right)_{2}\right]_{\mathrm{n}}[22]$. The structure as shown in figure 3 is stabilized through $\pi-\pi$ interactions between bipyridyl groups in parallel chains with interplanar distances of 3.29(1) Å.
3.1.2. $\left[\mathbf{C d}(\mathbf{2}-\mathrm{acpy})\left(\mathbf{N}_{3}\right)_{2}\right]_{n}$ (2). The principle structural features of complex $\mathbf{2}$ are illustrated in figure 4 . Each $\mathrm{Cd}(\mathrm{II})$ centre is six-coordinated by four azido groups $[\mathrm{Cd}-\mathrm{N}$ distances ranging from $2.2473(16)$ to $2.4280(16) \AA$], a hetero N atom of 2-acpy $[\mathrm{Cd}-\mathrm{N}=2.3194(15) \AA$ A and the oxygen atom of the same chelating $\mu-\mathrm{N}, \mathrm{O}-2-$ acpy ligand $[\mathrm{Cd}-\mathrm{O}=2.3993(14) \AA$]. The four azido groups act as EO bridges $[\mathrm{N}(1 \mathrm{~A})-$ $N(2 A)-N(3 A)]$ linking the $\mathrm{Cd}(\mathrm{II})$ centre to form four-membered $\mathrm{Cd}_{2} \mathrm{~N}_{2}$ rings connected together in a 1D chain (figure 5). Chelating 2-acpy ligands are located on alternate sides of this chain in a zigzag manner along the a axis. Similar 1D chain complexes $\left[\mathrm{Cd}(\text { bipy }) \mathrm{Cl}_{2}\right]_{n}$ and $\left[\mathrm{Cd}(1,10 \text {-phenanthroline }) \mathrm{Cl}_{2}\right]_{n}$ consisting of a zigzag $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ subunit and chelating bipyridine or 1,10 -phenanthroline ligands on alternate sides [5]. The azido groups are not symmetric $[\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A}) 1.202(2), \mathrm{N}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A}) 1.146(3) \AA$ and $\mathrm{N}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B}) \quad 1.209(2), \mathrm{N}(2 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B}) \quad 1.149(3) \AA]$, but are close to linear $\left[\mathrm{N}(3 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A}) 177.5(2), \mathrm{N}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B}) 178.5(2)^{\circ}\right]$. We recently reported another polymorph of complex $\mathbf{2}$ with a 2 D structure generated by alternating bridging di- $\mu_{1,3}$-azido and $\mu_{1,1}$-azido groups [13a]. This structure also contains a chelating 2 -acpy ligand alternating on the sides of the 2D motif.

Acknowledgements

This work was funded by the Swedish International Development Cooperation Agency under the Swedish Research Links program (grants 348-2002-6879 and 348-2004-5473). The author is grateful to Prof. Vratislav Langer (Department of Environmental Inorganic Chemistry, Chalmers University of Technology) for his advice and for the use of equipment and computational facilities.

References

[1] (a) B.F. Hoskins, R. Robson. J. Am. Chem. Soc., 112, 1546 (1990); (b) M. Fujita, Y.J. Kwan, S. Washizu, K. Ogurs. J. Am. Chem. Soc., 116, 1151 (1994); (c) O.M. Yaghi, H.L. Li. J. Am. Chem. Soc., 117, 10401 (1995).
[2] (a) P.J. Hagrman, D. Hagrman, J. Zubieta. Angew. Chem., Int. Ed. Engl., 38, 2638 (1994); (b) M.L. Hernandez, M.G. Barandika, M.K. Urtiaga, R. Cortes, L. Lezama, M.I. Arriortua. J. Chem. Soc., Dalton Trans., 79 (2000) and references therein; (c) C. Janiak. J. Chem. Soc., Dalton Trans., 2781 (2003); (d) S.L. James. Chem. Soc. Rev., 32, 276 (2003).
[3] (a) H. Hongwei, S. Yinglin, X. Hong, W. Yongli, F. Yaoting, Z. Yu, L. Link, D. Chenxia. Macromolecules, 36, 999 (2003); (b) L.-Y. Zhang, G.-F. Liu, S.-L. Zheng, B.-H. Ye, X.-M. Zhang, X.-M. Chen. Eur. J. Inorg. Chem., 2965 (2003); (c) H. Hongwei, M. Xiangru, S. Yinglin, F. Yaoting, Z. Yu, L. Huijie, D. Chenxia, S. Weihua. Inorg. Chem., 41, 4068 (2002); (d) W. Lin, O.R. Evans, R.-G. Xing, Z. Wang. J. Am. Chem. Soc., 120, 13272 (1998); (e) W.B. Lin, Z.Y. Wang, L. Ma. J. Am. Chem. Soc., 121, 11249 (1999).
[4] (a) A. Neels, H. Stooeckli-Evans. Inorg. Chem., 38, 6164 (1999); (b) Z.-M. Sun, J.-G. Mao, Y.-Q. Sun, H.-Y. Zeng, A. Clearfield. Inorg. Chem., 43, 336 (2004); (c) X.-M. Zhang, J.-S. Chen, K.-Y. Xu, C.-R. Ding, W.-L. She, X.-M. Chen. Inorg. Chim. Acta, 357, 1389 (2004).
[5] (a) R.-X. Yuan, R.-G. Xiong, Y.-L. Xie, X.-Z. You, S.-M. Peng, G.-H. Lee. Inorg. Chem. Comm., 4, 384 (2001); (b) H.-B. Chen, Z.-H. Zhou, H.-L. Wan, S.W. Ng. Acta Cryst., E59, m845 (2003); (c) Y.-F. Zhou, Y. Xu, D.-Q. Yuan, M.-C. Hong. Acta Cryst., E59, m821 (2003).
[6] (a) D. Bose, S.H. Rahaman, G. Mostafa, R.D.B. Walsh, M.J. Zaworotko, B.K. Ghosh. Polyhedron, 23, 545 (2004); (b) C. Tu, X. Wu, Q. Liu, X. Wang, Q. Xu, Z. Guo. Inorg. Chim. Acta, 357, 95 (2004); (c) X. Meng, H. Hou, G. Li, B. Ye, T. Ge, Y. Fan, Y. Zhu, H. Sakiyama. J. Organomet. Chem., 689, 1218 (2004).
[7] (a) A. Escuer, R. Vicente, M.A.S. Goher, F.A. Mautner, M.A.M. Abu-Youssef. J. Chem. Soc., Chem. Commun., 64 (2002); (b) M.A.S. Goher, J. Cano, Y. Journaux, M.A.M. Abu-Youssef, F.A. Mautner, A. Escuer, R. Vicente. Chem. Eur. J., 6, 778 (2000).
[8] (a) M.A.M. Abu-Youssef, A. Escuer, D. Gatteschi, M.A.S. Goher, F.A. Mautner, R. Vicente. Inorg. Chem., 38, 5716 (1999); (b) M.A.M. Abu-Youssef, A. Escuer, M.A.S. Goher, F.A. Mautner, G. Reiss, R. Vicente. Angew. Chem., Int. Ed. Engl., 39, 1624 (2000).
[9] (a) A. Escuer, R. Vicente, M.A.S. Goher, F.A. Mautner. J. Chem. Soc., Dalton Trans., 4431 (1997); (b) M.A.S. Goher, F.A. Mautner. Croat. Chem. Acta, 63, 559 (1990).
[10] (a) M.A.M. Abu-Youssef, M. Drillon, A. Escuer, M.A.S. Goher, F.A. Mautner, R. Vicente. Inorg. Chem., 39, 5022 (2000); (b) B.V. L'vov. Thermochim. Acta, 291, 179 (1997).
[11] (a) M.A.S. Goher. Thermochim. Acta, 336, 61 (1999) and references therein; (b) I. Agrell. Acta Chem. Scand., 24, 3575 (1970) and references therein; (c) M. Fettouhi, B. El-Ali, A.-M. El-Ghanam, S. Golhen, L. Ouahab, N. Daro, J.-P. Sutter. Inorg. Chem., 41, 3705 (2002).
[12] (a) M.A.S. Goher, M.A.M. Abu-Youssef, F.A. Mautner. Polyhedron, 15, 453 (1996); (b) F.A. Mautner, M.A.M. Abu-Youssef, M.A.S. Goher. Polyhedron, 16, 235 (1997).
[13] (a) M.A.S. Goher, F.A. Mautner, M.A.M. Abu-Youssef, A.K. Hafez, A.M.A. Badr. J. Chem. Soc., Dalton Trans., 3309 (2002); (b) M.A.S. Goher, F.A. Mautner, A.K. Hafez, M.A.M. Abu-Youssef, C. Gspan, A.M.A. Badr. Polyhedron, 22, 975 (2003).
[14] (a) F.A. Mautner, C. Gspan, M.A.S. Goher, M.A.M. Abu-Youssef. Monatsh. Chem., 134, 1311 (2003); (b) M.A.S. Goher, F.A. Mautner, M.A.M. Abu-Youssef, A.K. Hafez, A.M.A. Badr, C. Gspan. Polyhedron, 22, 3137 (2003).
[15] (a) F.A. Mautner, C. Gspan, K. Gatterer, M.A.S. Goher, M.A.M. Abu-Youssef, E. Bucher, W. Sitte. Polyhedron, 23, 1217 (2004); (b) M.A.S. Goher, A.K. Hafez, M.A.M. Abu-Youssef, A.M.A. Badr, C. Gspan, F.A. Mautner. Polyhedron, 23, 2349 (2004); (c) F.A. Mautner, C. Gspan, M.A.M. Abu-Youssef, M.A.S. Goher. Monatsh. Chem., 136, 107 (2005).
[16] SMART \& SAINT: Area Detector Control and Integration Software, Siemens AXS, Madison, WI (1995).
[17] G.M. Sheldrick. SADABS. Program for Empirical Absorption Correction of Area Detectors (Version 2.03), University of Göttingen, Germany (2002).
[18] SHELXTL: Structure Determination Programs (Version 6.10), Bruker AXS Inc., Madison, WI (2001).
[19] K. Brandenburg. Diamond: Visual Crystal Structure Information System (Version 2.1e), Crystal Impact GbR, Bonn, Germany (2001).
[20] Y.-F. Yue, E.-Q. Gao, S.-Q. Bai, Z. He, C.-H. Yan. Cryst. Eng. Comm., 6, 549 (2004).
[21] S.-Q. Bai, E.-Q. Gao, Z. He, C.-J. Fang, C.-H. Yan. Cryst. Eng. Comm., 6, 606 (2004).
[22] X. He, C.-Z. Lu, Y.-Q. Yu, S.-M. Chen, X.-Y. Wu, Y. Yan. Z. Anorg. Allg. Chem., 630, 1131 (2004).

[^0]: *Email: morsy5@link.net

[^1]: Symmetry transformations used to generate equivalent atoms are (i): $-x, y,-z+3 / 2$; (ii): $-x,-y+2,-z+2$; (iii): $x,-y+2$, $z-1 / 2$.

